Tag Archives: engagement

Mathematics and the transition from primary to secondary schooling

As the end of the year looms, many students are preparing to transition from primary to secondary school. Most children look forward to going to high school and adjust quickly to the transition, expressing a preference for secondary school above primary school (Akos & Galassi, 2004; Howard & Johnson, 2004). Unfortunately, despite these initial positive sentiments, as their first year of high school progresses many students begin to develop negative attitudes towards secondary schooling (Ashton, 2008; Bicknell, 2009), and often, towards mathematics.

Students about to transition from primary to secondary schooling often have pre-conceived ideas and high expectations of the academic challenges presented by secondary schools. Often students’ perceptions of what is involved at secondary school are distorted and are promoted by parents, older siblings and often primary school teachers. Despite their best intentions, parents and primary teachers are generally unfamiliar with the secondary school environment and curriculum and attempts to prepare primary students for secondary schooling may result in preparing them for an environment that does not exist (Akos & Galassi, 2004). This is particularly relevant to the study of mathematics, where students are often prepared for work they perceive to be ‘much harder’ than primary school mathematics (Howard & Johnson, 2004).

In an Australian study of students’ perceptions of the transition to secondary school, students found the academic work during their first year of secondary school was no harder, or was easier than their final primary year, yet they still had difficulty adjusting to the academic environment of the secondary school (Kirkpatrick, 1992). Although there may be a lack of challenge, the transition to secondary school often results in some level of achievement loss (Athanasiou & Philippou, 2009; Bicknell, 2009). This is sometimes due to secondary students being focused on performance rather than being task-orientated in order to improve competencies (Alspaugh, 1998; Zanobini & Usai, 2002). Academic challenge seems to be an ongoing and contentious issue in the middle years of schooling.

Difficult transitions to high school can lead to disengagement, negative attitudes towards school, reduced self-confidence, and reduced levels of motivation, particularly in the area of mathematics education (Athanasiou & Philippou, 2009). Some of the transition difficulties that impact negatively on students are the disruptions within friendship networks, reducing relatedness to school and classroom, the different structure of the secondary school (larger number of teachers), and a more competitive and norm-referenced environment, resulting in lower engagement. A study of motivation and engagement levels of 1019 Australian primary and secondary school teachers conducted by Martin (2006) found that, reflecting the teachers’ levels of motivation and engagement, the primary school students’ motivation and engagement levels were rated higher than that of high school students. Martin’s study found that some of the transition difficulties that impact negatively on students’ motivation and engagement are:

  • disruptions within friendship networks reduces relatedness to school and classroom;
  • some students experience difficulty adapting to a larger environment, reducing the feeling of community;
  • the structure of some high schools involves students having a significantly larger number of teachers, resulting in difficulty establishing supportive relationships;
  • more authority-based teacher-student relationships within the high school result in less intrinsic motivation; and
  • a more competitive and norm-referenced environment in high school often results in lower engagement levels.

Such transition issues are not limited to students in Australian schools. McGee et al., (2003) found substantial agreement in international literature that an effect of transition is often a decline in achievement. Eccles and Wigfield (1993) attribute the decline in students’ attitudes and performance in subjects such as mathematics to changes in students’ concepts of themselves as learners as they get older. In contrast to this belief, Whitley et al., (2007) claim secondary teachers often have higher expectations of students when compared to primary school teachers, thus explaining the decline in achievement as a mismatch between teacher expectations and students’ abilities. Related to high expectations of students, one of the issues facing secondary teachers is how much they want to know about their students coming from primary school. Some teachers favour a ‘fresh start’ approach as they are often faced with students from a variety of schools, perhaps to the detriment of some students. Research has found this to be particularly the case with mathematics, causing a lack of continuity across the curriculum (Bicknell, 2009).

Another long-term issue of transition identified by McGee et al., (2003), is curriculum continuity and coherence across primary and secondary schools. It was found there are gaps in subject content, differences in teaching and learning practices and inconsistencies in the expectations of students. Current curriculum documents aim to address this and minimise gaps in curriculum by presenting content as a continuum across the grades, with all teachers having access to the content requirements for learners at all stages (Australian Curriculum Assessment and Reporting Authority (ACARA), 2010).

Lowered achievement levels could also be explained by the use of more formal, competitive assessment practices that students experience in secondary school. A move away from intrinsic methods of assessment towards a more impersonal, more evaluative, more formal and more competitive environment is another significant factor effecting transition to secondary school.

So what can teachers and schools do to ensure students maintain their engagement with mathematics and with school as they enter secondary education? Here are some suggestions:

  • Build transition programs that promote collaboration between primary and secondary schools
  • Invite secondary mathematics teachers to visit and observe (and perhaps teach) primary mathematics lessons and vice versa
  • Hold joint parent and student information sessions that explain pedagogy and the mathematics curriculum expectations
  • Attend professional learning aimed at middle years mathematics pedagogy and content
  • Be familiar with mathematics curriculum requirements at both primary and secondary levels.


Akos, P., & Galassi, J. P. (2004). Middle and high school transitions as viewed by students, parents, and teachers. ASCA Professional School Counseling, 7(4), 212-221.

Alspaugh, J. W. (1998). Achievement loss associated with the transition to middle school and high school. The Journal of Educational Research, 92(1), 20-23.

Ashton, R. (2008). Improving the transfer to secondary school: How every child’s voice can matter. Support for Learning, 23(4), 176-182.

Athanasiou, C., & Philippou, G. N. (2009). Students’ views of their motivation in mathematics across the transition from primary to secondary school. Paper presented at the 33rd Conference of the International Group for the Psychology of Mathematics Education., Thessaloniki, Greece.

Australian Curriculum Assessment and Reporting Authority (ACARA). (2010). The Australian curriculum: Mathematics Retrieved 8th August, 2010, from http://www.australiancurriculum.edu.au/Mathematics/Curriculum/F-10

Bicknell, B. (2009). Continuity in mathematics learning across a school transfer. Paper presented at the 33rd Conference of the International Group for the Psychology of Mathematics Education, Thessaloniki, Greece.

Eccles, J. S., & Wigfield, A. (1993). Negative effects of traditional middle schools on student motivation. . Elementary School Journal, 93(5), 553-574.

Howard, S., & Johnson, B. (2004, 28 November – 2 December). Transition from primary to secondary school: Possibilities and paradoxes. Paper presented at the Conference of the Australian Association for Research in Education, Melbourne.

Kirkpatrick, D. (1992, November). Students’ perceptions of the transition from primary to secondary school. Paper presented at the Australian Association for Research in Education/New Zealand Association for Educational Research joint conference, Deakin University, Geelong. http://www.aare.edu.au/92pap/kirkd92003.txt

Martin, A. J. (2006). The relationship between teachers’ perceptions of student motivation and engagement and teachers’ enjoyment of and confidence in teaching. Asia-Pacific Journal of Teacher Education, 34(1), 73-93.

McGee, C., Ward, R., Gibbons, J., & Harlow, A. (2003). Transition to secondary school: A literature review. Ministry of Education, New Zealand.

Whitley, J., Lupart, J. L., & Beran, T. (2007). Differences in achievement between adolescents who remain in a K-8 school and those who transition to a junior high school. Canadian Journal of Education, 30(3), 649-669.

Zanobini, M., & Usai, M. C. (2002). Domain-specific self-concept and achievement motivation in the transition from primary to low middle school. Educational Psychology, 22(2), 203-217.

Technology in the classroom can improve primary mathematics

File 20170905 28074 1wx7i8h
There’s much more to mathematics than computation, and that’s where more contemporary technologies can improve primary mathematics.

Catherine Attard, Western Sydney University

Many parents are beginning to demand less technology use in the primary classroom due to the amount of screen time children have at home. This raises questions about whether technology in the classroom helps or hinders learning, and whether it should be used to teach maths.

Blaming the calculator for poor results

We often hear complaints that children have lost the ability to carry out simple computations because of the reliance on calculators in primary schools. This is not the case. In fact, there has been very little research conducted on the use of calculators in classrooms since the 80’s and 90’s because they are not a significant feature of primary school maths lessons. When calculators are used in primary classrooms, it’s usually to help children develop number sense, to investigate number patterns and relationships, or to check the accuracy of mental or written computation.

There is also evidence that children become more flexible in the way they compute through the use of calculators. It allows them to apply their knowledge of place value and other number related concepts rather than using a traditional algorithm.

The Australian Curriculum promotes a strong focus on the development of numeracy, including the development of estimation and mental computation. These are skills that children need in order to use calculators and other technologies efficiently.

The curriculum also promotes the thinking and doing of mathematics (referred to as “proficiencies”) rather than just the mechanics. There’s much more to mathematics than computation. That’s where more contemporary technologies can improve primary mathematics.

The importance of technology in learning maths

The use of digital technologies in the primary mathematics classroom is not an option. The Australian Curriculum and Reporting Authority (ACARA) has made it mandatory for teachers to incorporate technologies in all subject areas. Fortunately, schools have access to more powerful, affordable devices than ever before. Importantly, these are the same devices that many children already have access to at home, providing an opportunity to bridge the gap between the mathematics at school and their lives outside the classroom.

Literature around digital technologies and mathematics suggest new technologies have potentially changed teaching and learning, providing opportunities for a shift of focus from a traditional view to a more problem-solving approach. This notion is supported by research that claims the traditional view of mathematics that was focused on memorisation and rote learning is now replaced with one that has purpose and application.

When used well, technology can improve student engagement with mathematics and assists in improving their understanding of mathematical concepts.

In a recent research evaluation of the Matific digital resources, the findings were positive. The students found that they enjoyed using the digital resource on iPads and computers, and went from thinking about mathematics as something to be tolerated or endured to something that is fun to learn. An added bonus was that the children voluntarily started to use their screen time at home to do maths. Pre- and post-test data also indicated that the use of the technology contributed to improved mathematics results.

How technology is used in the classroom

Many would consider that the use of mobile devices in maths would consist of simple game playing. A search of the App Store reveals tens of thousands of supposedly educational maths games, creating a potential app trap for teachers who might spend hours searching through many low- quality apps. Although playing games can have benefits in terms of building fluency, they don’t usually help children learn new concepts. Luckily, there’s much that teachers can and are doing with technology.

The following are some of the different ways teachers are using technology:

Show and tell apps, such as Explain Everything, EduCreations or ShowMe, allow students to show and explain the solution to a mathematical problem using voice and images

– Flipped learning, where teachers use the technology to replace traditional classroom instruction. YouTube videos or apps that provide an explanation of mathematical concepts are accessed by students anywhere and anytime

– Subscription based resource packages such as Matific which provide interactive, game-based learning activities, allow the teacher to set activities for individual students and keep track of student achievement

– Generic apps (camera, Google Earth, Google Maps, Geocaching) that allow students to explore mathematics outside the classroom.

The ConversationJust as the world has changed, the mathematics classroom has also changed. Although technology is an integral part of our lives, it shouldn’t be the only resource used to teach maths. When it comes to technology in the classroom, it’s all about balance.

Catherine Attard, Associate Professor, Mathematics Education, Western Sydney University

This article was originally published on The Conversation. Read the original article.

For a list of maths apps, click here:

iPad apps and Mathematics 2015

Promoting Student Reflection to Improve Mathematics Learning

Critical reflection is a skill that doesn’t come naturally for many students, yet it is one of the most important elements of the learning process. As teachers, not only should we practice what we preach by engaging in critical reflection of our practice, we also need to be modelling critical reflection skills to our students so they know what it looks like, sounds like, and feels like (in fact, a Y chart is a great reflection tool).

How often do you provide opportunities for your students to engage in deep reflection of their learning? Consider Carol Dweck’s research on growth mindset. If we want to convince our students that our brains have the capability of growing from making mistakes and learning from those mistakes, then critical reflection must be part of the learning process and must be included in every mathematics lesson.

What does reflection look like within a mathematics lesson, and when should it happen?Reflection can take many forms, and is often dependent on the age and abilities of your students. For example, young students may not be able to write fluently, so verbal reflection is more appropriate and can save time. Verbal reflections, regardless of the age of the student, can be captured on video and used as evidence of learning. Video reflections can also be used to demonstrate learning during parent/teacher conferences. Another reflection strategy for young students could be through the use of drawings. Older students could keep a mathematics journal, which is a great way of promoting non-threatening, teacher and student dialogue. Reflection can also occur amongst pairs or small groups of students.

How do you promote quality reflection? The use of reflection prompts is important. This has two benefits: first, they focus students’ thinking and encourage depth of reflection; and second, they provide information about student misconceptions that can be used to determine the content of the following lessons. Sometimes teachers fall into the trap of having a set of generic reflection prompts. For example, prompts such as “What did you learn today?”, “What was challenging?” and “What did you do well?” do have some value, however if they are over-used, students will tend to provide generic responses. Consider asking prompts that relate directly to the task or mathematical content.

An example of powerful reflection prompts is the REAL Framework, from Munns and Woodward (2006). Although not specifically written for mathematics, these reflection prompts can be adapted. One great benefit of the prompts is that they fit into the three dimensions of engagement: operative, affective, and cognitive. The following table represents reflection prompts from one of four dimensions identified by Munns and Woodward: conceptual, relational, multidimensional and unidimensional.

Picture1(Munns & Woodward, 2006)

Finally, student reflection can be used to promote and assess the proficiencies (Working Mathematically in NSW) from the Australian Curriculum: Mathematics as well as mathematical concepts. It can be an opportunity for students to communicate mathematically, use reasoning, and show evidence of understanding. It can also help students make generalisations and consider how the mathematics can be applied elsewhere.

How will you incorporate reflection into your mathematics lessons? Reflection can occur at any time throughout the lesson, and can occur more than once per lesson. For example, when students are involved in a task and you notice they are struggling or perhaps not providing appropriate responses, a short, sharp verbal reflection would provide opportunity to change direction and address misconceptions. Reflection at the conclusion of a lesson consolidates learning, and also assists students in recognising the learning that has occurred. They are more likely to remember their learning when they’ve had to articulate it either verbally or in writing.

And to conclude, some reflection prompts for teachers (adapted from the REAL Framework):

  • How have you encouraged your students to think differently about their learning of mathematics?
  • What changes to your pedagogy are you considering to enhance the way you teach mathematics?
  • Explain how your thinking about mathematics teaching and learning is different today from yesterday, and from what it could be tomorrow?



Munns, G., & Woodward, H. (2006). Student engagement and student self-assessment: the REAL framework. Assessment in Education, 13(2), 193-213.





Are you an engaged teacher?

“The first job of a teacher is to make the student fall in love with the subject. That doesn’t have to be done by waving your arms and prancing around the classroom; there’s all sorts of ways to go at it, but no matter what, you are a symbol of the subject in the students’ minds” (Teller, 2016).

Teller (2016), makes a powerful point about teaching and engagement, and how important it is that we, as teachers, portray positive attitudes towards our subject and towards teaching it. Do you consider yourself an engaged teacher? Are your students deeply engaged with mathematics, and how do you know? In education we talk about student engagement every day, but what do we actually mean when we use the term ‘engagement’? When does real engagement occur, and how do we, as teachers, influence that engagement? In this post, I will define the construct of engagement and pose some questions that will prompt you to reflect on how your teaching practices and the way you interpret the curriculum, influences your own engagement with the teaching of mathematics and, as a result, the engagement of your students.

Student Engagement: On Task vs. In Task

In education, engagement is a term used to describe students’ levels of involvement with teaching and learning. Engagement can be defined as a multidimensional construct, consisting of operative, cognitive, and affective domains. Operative engagement encompasses the idea of active participation and involvement in academic and social activities, and is considered crucial for the achievement of positive academic outcomes. Affective engagement includes students’ reactions to school, teachers, peers and academics, influencing willingness to become involved in school work. Cognitive engagement involves the idea of investment, recognition of the value of learning and a willingness to go beyond the minimum requirements

It’s easy to fall into the trap of thinking that students are engaged when they appear to be busy working and are on task.  True engagement is much deeper – it is ‘in task’ behaviour, where all three dimensions of engagement; cognitive, operative, and affective, come together (see figure 1).  This leads to students valuing and enjoying school mathematics and seeing connections between the mathematics they do at school and the mathematics they use in their lives outside school. Put simply, engagement occurs when students are thinking hard, working hard, and feeling good about learning mathematics.

Screen Shot 2017-05-23 at 1.35.49 pm

There are a range of influences on student engagement. Family, peers, and societal stereotypes have some degree of influence. Curriculum and school culture also play a role. Arguably, it is teachers who have a powerful influence on students’ engagement with mathematics (Anthony & Walshaw, 2009; Hattie, 2003). Classroom pedagogy, the actions involved in teaching, is one aspect of a broader perspective of the knowledge a teacher requires in order to be effective. The knowledge of what to teach, how to teach it and how students learn is referred to as pedagogical content knowledge (PCK). The construct of PCK was originally introduced by Schulman (1986), and substantial research building on this work has seen a strong focus on PCK in terms of mathematics teaching and learning (Delaney, Ball, Hill, Schilling, & Zopf, 2008; Hill, Ball, & Schilling, 2008; Neubrand, Seago, Agudelo-Valderrama, DeBlois, & Leikin, 2009). Although this research provides insight into the complex knowledge required to effectively teach mathematics, little attention is paid to how teachers themselves are engaged with teachers.

Engaged Teachers = Engaged Students

It makes sense that teachers need to be engaged with the act of teaching in order to effectively engage their students. If we take the definition of student engagement and translate it to a teaching perspective, perhaps it would look something like Figure 2, where teachers are fully invested in teaching mathematics, work collaboratively with colleagues to design meaningful and relevant tasks, go beyond the minimum requirements of delivering curriculum, and genuinely enjoy teaching mathematics in a way that makes a difference to students. In other words, thinking hard, working hard, and feeling good about teaching mathematics.

Screen Shot 2017-05-23 at 1.35.58 pm

Are you an engaged teacher?

Teaching is a complex practice with many challenges. Teaching mathematics has the additional challenge of breaking down many stereotypical beliefs about mathematics as being difficult and only for ‘smart’ people, mathematics viewed as black and white/right or wrong, and mathematics as a simply focused on arithmetic, to name a few. However, there are elements of our day to day work that we can actively engage with to disrupt those stereotypes, make teaching more enjoyable, and promote deeper student engagement. The following section provides some thoughts and questions for reflection.


How do you interpret the curriculum? Do you view it has a series of isolated topics to be taught/learned in a particular order, or do you see it has a collection of big ideas with conceptual relationships within and amongst the strands? How do you incorporate the General Capabilities and Cross-curriculum priorities in your teaching? Do you make the Working Mathematically components a central part of your teaching?


How do you plan for the teaching of mathematics? Does your school have a scope and sequence document that allows you to cater to emerging student needs? Does the scope and sequence document acknowledge the big ideas of mathematics or does it unintentionally steer teachers into treating topics/concepts in isolation?


How often do you assess? Are you students suffering from assessment fatigue and anxiety? Do you offer a range of assessment tasks beyond the traditional pen and paper test? Do your questions/tasks provide opportunities for students to apply the Working Mathematically components?


What gets you excited about teaching mathematics? Do you implement the types of tasks that you would get you engaged as a mathematician? Do your tasks have relevance and purpose?  Do you include variety and choice within your task design? Do you take into account the interests of your students when you plan tasks? Do you incorporate student reflection into your tasks?


How do you group your students? There are many arguments that support mixed ability grouping, yet there are also times when ability grouping is required. Is the way you group your students giving them unintended messages about ability and limiting their potential?


How do you use digital technology to enhance teaching and learning in your classroom? Do you take advantage of emerging technologies and applications? Do you use digital technology in ways that require students to create rather than simply consume?

Professional Learning

How do you incorporate professional learning into your role as an educator? Do you actively pursue professional learning opportunities, and do you apply what you have learned to your practice? Do you share what you have learned with your colleagues, promoting a community of practice within your teaching context?

There are many other aspects of teaching mathematics that influence our engagement as teachers, and of course, the engagement of our students. Many factors, such as other non-academic school-related responsibilities, are bound to have some influence over our engagement with teaching. However, every now and then it is useful to stop and reflect on how our levels of engagement, our enthusiasm and passion for the teaching of mathematics, can make a difference to the engagement, and ultimately the academic outcomes, of our students.


Anthony, G., & Walshaw, M. (2009). Effective pedagogy in mathematics (Vol. 19). Belley, France.

Attard, C. (2014). “I don’t like it, I don’t love it, but I do it and I don’t mind”: Introducing a framework for engagement with mathematics. Curriculum Perspectives, 34(3), 1-14.

Delaney, S., Ball, D. L., Hill, H. C., Schilling, S. G., & Zopf, D. (2008). “Mathematical knowledge for teaching”: Adapting U.S. measures for use in Ireland. Journal for Mathematics Teacher Education, 11(3), 171-197.

Hattie, J. (2003). Teachers make a difference: What is the research evidence? Paper presented at the Building Teacher Quality: The ACER Annual Conference, Melbourne, Australia.

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualising and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372-400.

Neubrand, M., Seago, N., Agudelo-Valderrama, C., DeBlois, L., & Leikin, R. (2009). The balance of teacher knowledge: Mathematics and pedagogy. In T. Wood (Ed.), The professional education and development of teachers of mathematics: The 15th ICMI study (pp. 211-225). New York: Springer.

Teller, R.  (2016) Teaching: Just like performing magic. Retrieved from http://www.theatlantic.com/education/archive/2016/01/what-classrooms-can-learn-from-magic/425100/?utm_source=SFTwitter


When a Maths Curse is a Good Curse!

In one of my previous posts I wrote about the use of children’s literature to encourage rich mathematical investigations and improve student engagement with mathematics. One of my favourite books, Math Curse by John Szieska and Lane Smith, is described in the blog post as a great way to engage reluctant learners. Even better, Math Curse encourages children (and their teachers) to see the mathematics that is embedded in every aspect of our lives. In this post I am going to share some student work from a Grade 3 classroom. In this classroom, the teacher read the book to the students before challenging them create their own class maths curse. The children took their own photographs, and working in small groups, they came up with a range of mathematical problems and investigations, which they then gave to other groups to solve.

Here are some of the photos with their accompanying questions:


  1. If one of the beyblades spins for 2 minutes and 31 seconds and the other one spins for 1 minute and 39 seconds what is the difference between the two times?
  2. If one of the beyblades spins for 1 minute and 1 second and another spins for 78 seconds, which beyblade spun for the longest and by how long?


  1. If there are 31 people in the class (10 boys and 21 girls) and all of them have hair that is 30cm long. Half of the boys cut 10cm off their hair, the other half cut 20cm off their hair. How long is the classes hair now altogether? How long was it before? How much hair has been cut altogether?
  2. Check your friend’s hair. Estimate how long it is when it is out, how long it is when it is in a ponytail, and how long it is when it is in a braid. List some different ways you could check if your estimate is accurate? What are the potential problems with your methods?
  3. I’m 9 years old. I had really long hair for 6 years, then I cut it. How long did I have short hair for?
  4. I have 5 friends that are girls and 2 friends that are boys. All 5 girls have hair length of 50cm. The boys both have different lengths of hair. The 1st boy has 30cm of hair, the second has 25cm of hair. What is the difference between the 1st boy and the girls and the 2nd boy and the girls?

Birthday Balloons:

  1. Write down the dates of important celebrations. If you add all the dates together, what is the value of their numbers?
  2. How many days are there in 6 years?
  3. If everyone’s birthday occurred every three years (starting the year you are born) what years would your birthday fall on?
  4. If Lisa and Jane went on a holiday every 2 months, how many holidays could they take in a year?
  5. If you could rearrange the seasons, what months would you choose to be Spring? Why?
  6. What is the most popular letter in the days of the months?
  7. Why do you think there are 4 seasons in a year?

From Problem Solving to Problem Posing

What is the purpose of getting students to write mathematical problems? First of all, the problems give us good insight into whether students recognise mathematical situations, and whether they understand where, how, and what mathematics is applied in day to day situations. An added bonus is that the students are highly engaged because they have ownership of the mathematics they are generating, the topics they choose are of interest to them, and stereotypical perceptions of school mathematics are disrupted.

Student Reflection

The students who wrote the examples above completed a structured written reflection following the sequence of designing and solving each others’ maths curses. Here are some of reflection prompts and a sample of responses:

What did you enjoy about today’s learning?

“working with my team”
“working at the problems for a long time and then finally getting them after a long, hard discussion”

“solving questions that my friends wrote”

“I felt challenged and I learnt more about what maths is”

“working with my group, choosing our own questions and learning something new”

“I liked the chess card the best because we had to solve it together and use problem solving”

“having a go at tricky questions even if i got them wrong”

Did you learn anything new?

“how to work things out in different ways”

“working in groups helps you learn more skills”

“not every question uses just one skill like addition, division, multiplication or subtraction”

“when I am challenged I learn more”

“Maths is not always easy”

“how to work together”

“Everyone in the group has different responses so we needed proof to figure out the right one”

What surprised you about this task?

“It surprised me how hard my own questions were”

“I didn’t know that we could come up with so many interesting questions”
“I got a shock! We had to research to solve some problems, Adam even taught me how to add a different way”

“I got some questions wrong “

“It was hard but if we put our brains into gear we could figure it out”

“I was able to play while doing maths” 

Using activities such as this provides multiple benefits for students. Contextualising the mathematics using students’ interests highlights the relevance of the curriculum, improves student engagement, and makes mathematics meaningful, fun and engaging!

A recipe for success: Critical ingredients for a successful mathematics lesson

What are the ingredients for a good mathematics lesson? Teachers are continually faced with a range of advice or ideas to improve their mathematics lessons. It’s a little bit like recipes. New cookbooks appear on bookstore shelves, but often they’re just adaptations of recipes that have been around before, and their foundation ingredients are tried and tested, and often evidence based. There are always the staple ingredients and methods that are required for the meal to be successful.

The following is a list of what I consider to be important ingredients when planning and teaching a successful mathematics lesson. The list (or recipe) is split into two: lesson planning and lesson structure.

Lesson planning:

  • Be clear about your goal. What exactly do you want your students to learn in this lesson? How are you going to integrate mathematical content with mathematical processes? (The proficiencies or Working Mathematically components)
  • Know the mathematics. If you don’t have a deep understanding of the mathematics or how students learn that aspect of mathematics, how can you teach it effectively? Where does the mathematics link across the various strands within the mathematics curriculum?
  • Choose good resources. Whether they are digital or concrete materials, make sure they are the right ones for the job. Are they going to enhance students’ learning, or will they cause confusion? Be very critical about the resources you use, and don’t use them just because you have them available to you!
  • Select appropriate and purposeful tasks. Is it better to have one or two rich tasks or problems, or pages of worksheets that involve lots of repetition? Hopefully you’ve selected the first option – it is better to have fewer, high quality tasks rather than the traditional worksheet or text book page. You also need to select tasks that are going to promote lots of thinking and discussion.
  • Less is more. We often overestimate what students will be able to do in the length one lesson. We need to make sure students have time to think, so don’t cram in too many activities.
  • You don’t have to start and finish a task in one lesson. Don’t feel that every lesson needs to be self-contained. Children (and adults) often need time to work on complex problems and tasks – asking students to begin and end a task within a short period of time often doesn’t give them time to become deeply engaged in the mathematics. Mathematics is not a race!

Lesson Structure:

  • Begin with a hook. How are you going to engage your students to ensure their brains are switched on and ready to think mathematically from the start of each lesson? There are lots of ways to get students hooked into the lesson, and it’s a good idea to change the type of hook you use to avoid boredom. Things like mathematically interesting photographs, YouTube clips, problems, newspaper articles or even a strategy such as number busting are all good strategies.
  • Introduction: Make links to prior learning. Ensure you make some links to mathematics content or processes from prior learning – this will make the lesson more meaningful for students and will reassure anxious students. Use this time to find out what students recall about the particular topic – avoid being the focus of attention and share the lesson with students. Talk about why the topic of the lesson is important – where else does it link within the curriculum, and beyond, into real life?
  • Make your intentions clear. Let students know what they’re doing why they’re doing it. How and where is knowing this mathematics going to help them?
  • Body: This is a good time for some collaboration, problem solving and mathematical investigation. It’s a time to get students to apply what they know, and make links to prior learning and across the mathematics curriculum. This is also a time to be providing differentiation to ensure all student needs are addressed.
  • Closure: This is probably the most important time in any mathematics lesson. You must always include reflection. This provides an opportunity for students to think deeply about what they have learned, to make connections, and to pose questions. It’s also a powerful way for you, the teacher, to collect important evidence of learning. Reflection can be individual, in groups, and can be oral or written. It doesn’t matter, as long as it happens every single lesson.

There are many variables to the ingredients for a good mathematics lesson, but most importantly, know what you are teaching, provide opportunities for all students to achieve success, and be enthusiastic and passionate about mathematics!

Setting up Your Students for Mathematical Success : Tips for Teachers

Many children begin the new school year with feelings of fear and anxiety. Will they like their new teacher or teachers? Will the work be difficult? What will the homework be like? As you prepare programming and planning for a new teaching year and new students, give some thought to the strategies and activities you and your students can do in the first few weeks of term to ensure everyone gets the most out of their mathematics lessons for the entire school year. Think about what you can do differently in 2017 to make your work more engaging for both you and your students. The following are some ideas to consider.

  1. Be a positive mathematical role model

I’m sure this won’t come as a surprise, but there are teachers in our schools who actually don’t like maths and don’t like teaching it. Why is this a problem? Student know! This knowledge perpetuates the common misconception that it’s okay to dislike mathematics, and worse still, it’s okay to be considered ‘bad’ at maths.  Unless the teacher is an award-winning actor or actress, it’s really difficult to hide how you feel about a subject – it’s obvious in body language, tone of voice and of course, the way you teach the subject and the resources you use. If you know someone like this, suggest they seek some support from a colleague or colleagues. Often the reason a person dislikes mathematics is related to a lack of confidence.

  1. Get to know your students as learners of mathematics

The foundation of student engagement requires an understanding of students as learners, in other words, the development of positive pedagogical relationships (Attard, 2014). Positive relationships require teachers to understand how their students learn, and where and when they need assistance. It’s also important to provide opportunities for ongoing interactions between you and your students as well as amongst your students.

Another way to get to know your students as learners is to use existing data. For example, if your school takes part in external testing such as PAT, you can use this data as a guide. However, keep in mind that things change quickly when children are young – what they knew or understood three months ago may be very different after a long summer holiday.

A great activity to do in the very first few maths classes of the year is to ask your students to write or create a ‘Maths Autobiography’. If required, provide the students with some sentence starters such as “I think maths is…” “The thing I like best about maths is…” “The thing or things that worry me about maths is…” They could do this in different formats:

  • In a maths journal
  • Making a video
  • Using drawings (great for young children – a drawing can provide lots of information)
  1. Start off on a positive note

Have some fun with your maths lessons. I would strongly recommend that you don’t start the year with a maths test! If you want to do some early assessment, consider using open-ended tasks or some rich mathematical investigations. Often these types of assessments will provide much deeper insights into the abilities of your students. You can even use some maths games (either concrete or digital) to assess the abilities of your students.

A great maths activity for the first lesson of the year is getting-to-know-you-mathematically, where students use a pattern block and then need to go on a hunt to find other students who have specific mathematical attributes. Encourage your students to find someone different for every attribute on the list, and change the list to suit the age and ability of your students. For example, in the younger years you could use illustrations and not words. In the older years, you could make the mathematics more abstract.

  1. Take a fresh look at the curriculum

Even if you’ve been teaching for many years, it’s always good to take a fresh new look at the curriculum at the start of each year. Consider how the Proficiencies or Working Mathematically processes can be the foundation of the content that you’re teaching. For example, how can you make problem solving a central part of your lessons?
Take a close look at the General Capabilities. They provide a perfect foundation for contextual, relevant tasks that allow you to teach mathematics and integrate with other content areas.

  1. Consider the resources you use: Get rid of the worksheets!

Think about using a range of resources in your mathematics teaching. Regardless of their age or ability, children benefit from using concrete manipulatives. Have materials available for students to use when and if they need them. This includes calculators in early primary classrooms, where students can explore patterns in numbers, place value and lots of other powerful concepts using calculators.

Children’s literature is also a great resource. A wonderful book to start off the year is Math Curse by Jon Scieska and Lane Smith. Read the book to your students either in one sitting or bit by bit. There are lots of lesson ideas within the pages. Ask your students to write their own maths curse. It’s a great way to illustrate that mathematics underpins everything we do! It’s also a great way to gain insight into how your students view mathematics and what they understand about mathematics.

  1. How will you use technology in the classroom?

If you don’t already integrate technology into your mathematics lessons, then it’s time to start. Not only is it a curriculum requirement, it is part of students’ everyday lives – we need to make efforts to link students’ lives to what happens in the classroom and one way to do that is by using technology. Whether it’s websites, apps, YouTube videos, screencasting, just make sure that you have a clear purpose for using the technology. What mathematics will your students be learning or practicing, and how will you assess their learning?

  1. Reach out to parents

As challenging as it may be, it’s vital that parents play an active role in your students’ mathematical education. They too may suffer from anxiety around mathematics so it’s helpful to invite them into the classroom or hold mathematics workshops where parents can experience contemporary teaching practices that their students are experiencing at school. Most importantly, you need to communicate to parents that they must try really hard to be positive about mathematics!

These are just a few tips to begin the year with…my next blog post will discuss lesson structure. In the meantime, enjoy the beginning of the school year and:

Be engaged in your teaching.

Engaged teachers = engaged students.



Attard, C. (2014). “I don’t like it, I don’t love it, but I do it and I don’t mind”: Introducing a framework for engagement with mathematics. Curriculum Perspectives, 34(3), 1-14.