Tag Archives: technology

Technology in the classroom can improve primary mathematics

File 20170905 28074 1wx7i8h
There’s much more to mathematics than computation, and that’s where more contemporary technologies can improve primary mathematics.
Shutterstock

Catherine Attard, Western Sydney University

Many parents are beginning to demand less technology use in the primary classroom due to the amount of screen time children have at home. This raises questions about whether technology in the classroom helps or hinders learning, and whether it should be used to teach maths.

Blaming the calculator for poor results

We often hear complaints that children have lost the ability to carry out simple computations because of the reliance on calculators in primary schools. This is not the case. In fact, there has been very little research conducted on the use of calculators in classrooms since the 80’s and 90’s because they are not a significant feature of primary school maths lessons. When calculators are used in primary classrooms, it’s usually to help children develop number sense, to investigate number patterns and relationships, or to check the accuracy of mental or written computation.

There is also evidence that children become more flexible in the way they compute through the use of calculators. It allows them to apply their knowledge of place value and other number related concepts rather than using a traditional algorithm.

The Australian Curriculum promotes a strong focus on the development of numeracy, including the development of estimation and mental computation. These are skills that children need in order to use calculators and other technologies efficiently.

The curriculum also promotes the thinking and doing of mathematics (referred to as “proficiencies”) rather than just the mechanics. There’s much more to mathematics than computation. That’s where more contemporary technologies can improve primary mathematics.

The importance of technology in learning maths

The use of digital technologies in the primary mathematics classroom is not an option. The Australian Curriculum and Reporting Authority (ACARA) has made it mandatory for teachers to incorporate technologies in all subject areas. Fortunately, schools have access to more powerful, affordable devices than ever before. Importantly, these are the same devices that many children already have access to at home, providing an opportunity to bridge the gap between the mathematics at school and their lives outside the classroom.

Literature around digital technologies and mathematics suggest new technologies have potentially changed teaching and learning, providing opportunities for a shift of focus from a traditional view to a more problem-solving approach. This notion is supported by research that claims the traditional view of mathematics that was focused on memorisation and rote learning is now replaced with one that has purpose and application.

When used well, technology can improve student engagement with mathematics and assists in improving their understanding of mathematical concepts.

In a recent research evaluation of the Matific digital resources, the findings were positive. The students found that they enjoyed using the digital resource on iPads and computers, and went from thinking about mathematics as something to be tolerated or endured to something that is fun to learn. An added bonus was that the children voluntarily started to use their screen time at home to do maths. Pre- and post-test data also indicated that the use of the technology contributed to improved mathematics results.

How technology is used in the classroom

Many would consider that the use of mobile devices in maths would consist of simple game playing. A search of the App Store reveals tens of thousands of supposedly educational maths games, creating a potential app trap for teachers who might spend hours searching through many low- quality apps. Although playing games can have benefits in terms of building fluency, they don’t usually help children learn new concepts. Luckily, there’s much that teachers can and are doing with technology.

The following are some of the different ways teachers are using technology:

Show and tell apps, such as Explain Everything, EduCreations or ShowMe, allow students to show and explain the solution to a mathematical problem using voice and images

– Flipped learning, where teachers use the technology to replace traditional classroom instruction. YouTube videos or apps that provide an explanation of mathematical concepts are accessed by students anywhere and anytime

– Subscription based resource packages such as Matific which provide interactive, game-based learning activities, allow the teacher to set activities for individual students and keep track of student achievement

– Generic apps (camera, Google Earth, Google Maps, Geocaching) that allow students to explore mathematics outside the classroom.

The ConversationJust as the world has changed, the mathematics classroom has also changed. Although technology is an integral part of our lives, it shouldn’t be the only resource used to teach maths. When it comes to technology in the classroom, it’s all about balance.

Catherine Attard, Associate Professor, Mathematics Education, Western Sydney University

This article was originally published on The Conversation. Read the original article.

For a list of maths apps, click here:

iPad apps and Mathematics 2015

Primary Mathematics: Making the Most of Technology to Assess Student Learning

As the school year rapidly draws to a close, many teachers are beginning the task of reporting student achievement. For some, there may be a scramble to collect assessment data, and often, due to a sense of panic, teachers revert to pen and paper testing to gain a snapshot of their students’ ability measured against syllabus outcomes…one of the main reasons students develop a dislike of mathematics in the first place. The purpose of this blog post is to ask you to consider using alternative assessment evidence, and in particular, consider taking advantage of some of the educational software tools you may already be using in your classroom.

Regardless of what technological devices you use, if you do use technology in your mathematics lessons, chances are you already have some good assessment data that you can use in your reporting. Take, for example, the use of apps on an iPad or other mobile device. If your students are engaging in different apps to either build on their mathematical fluency (typically game-type apps) or to express mathematical reasoning and communication (with apps such as Explain Everything, Educreations or ShowMe), then it’s rather easy to collect evidence of learning. Some apps offer the affordance of being able to save student progress, and others simply require students to take a screen shot of their results.

screen-shot-2016-10-26-at-5-19-38-pm

Educreations allows you to save files that record audio and written mathematics, allowing assessment of content and process outcomes.

I recently conducted a research evaluation of the Matific suite of resources (access the research report here). One of Matific’s affordances is that it allows teachers to track student progress.

screen-shot-2016-10-26-at-5-29-54-pm screen-shot-2016-10-26-at-5-35-16-pm

The Matific website allows teachers to view assessment data in a number of ways

Interestingly, out of the 16 teachers involved in the study, only nine teachers used the ability to track student achievement and even fewer considered using it as assessment data. However, those who did use this affordance, considered it a valuable tool that allowed them to differentiate future tasks, tailoring the learning for individual student needs:

It was perfect in a sense that we made it a point that we started at the middle and we went down for those who needed extra support, which was fabulous because they were still doing it visually, they were doing the exact same thing, and then we also gave the option that they could go up if they felt confident enough but at the same time visually, it was exactly the same for those kids that don’t want to be different, that maybe do need that little bit of extra support (Year 6 teacher). 

Data from students’ interactions with educational apps such as Matific, game apps and productivity apps can provide valuable formative and summative assessment data that can remove the anxiety associated with formal pen and paper testing, particularly during the primary years when it’s critical that we foster high levels of student engagement. Consider the apps you currently use – how can you collect evidence and use it to your advantage and the students’ advantage…and also save you time? Isn’t it better to spend class time on learning rather than testing?

Thanks for the iPads, but what are we supposed to do with them?

This blog was originally posted back in November 2012, on the UWS 21st Century Learning site. It was written when iPads began to appear in schools. We’ve come a long way since then in terms of the increasing popularity of iPads and other tablet devices. However, I wonder how much has changed in relation to the way they are being used to teach and learn primary mathematics? I thought it would be interesting to revisit this post, so I have adapted it slightly to contextualise it into 2015.

The fast pace of technology development has seen a rapid uptake in mobile technologies such as the iPad computer tablet. Although not originally intended for use within educational settings when introduced in 2010, the iPad has fast become the ‘must have’ item in today’s classrooms.

One result of this is that teachers are often expected to integrate iPads or similar technologies into teaching and learning without the support of appropriate professional development, particularly in relation to using the technology to enhance teaching, learning and student engagement. While some claim iPads and other similar mobile devices have the potential to revolutionise classrooms (Banister, 2010; Ireland & Woollerton, 2010; Kukulska-Hulme, 2009), there is still little research informing teachers exactly how the iPads can be integrated to enhance learning and teaching, and whether their use will have a long-term positive impact on student learning outcomes.

So what do we do when we are given a set of iPads and told to use them in our classrooms? Early during the iPad ‘revolution’ I conducted two research projects investigating how iPads were being used to teach and learn mathematics in primary classrooms. These projects gave me the opportunity to observe a variety of pedagogies and make some interesting observations regarding practical issues relating to the management of iPads.

In each of the projects, teachers had been provided with iPads for their classrooms with little or no professional development that related to integration into teaching and learning practices. The teachers involved experienced a ‘trial and error’ process of using different strategies to integrate the iPads into their mathematics lessons, a task they found harder to do than with other subject areas. The iPads were used in a wide variety of ways that appeared to have differing levels of success. The success of each lesson was determined by the observed reaction to and the engagement of the students with the set tasks and the teacher’s reflection following the lesson.

Several lessons that incorporated iPads utilised a small group approach where students worked either independently or in small groups of two to three students on an application that was based upon the drill and practice of a mathematical skill. The challenge with this approach was that it was difficult for the teacher to know whether the students were on task, if there were any difficulties, and whether the chosen application was appropriate in terms of the level of cognitive challenge. Often when this pedagogy was implemented it was done so without student reflection at the conclusion of the lesson. Without discussion of the mathematics involved in the task, students did not have the opportunity to acknowledge any learning that occurred.

The pedagogies that appeared most effective were those that were based on using the technologies to solve problems in real-world contexts. When used this way, the iPads were used as tools to assist in achieving a set goal, rather than as a game. An example of one of these lessons was in Year 5, when students were asked to plan a hypothetical outing to the city to watch a movie. The children were able to use several applications on their iPads ranging from public transport timetables to cinema session time applications to plan their day out. The lesson resulted in rich mathematical conversations and problem solving, and high levels of engagement due to the real-life context within which the mathematics was embedded.

The integration of interactive whiteboards with iPads was also a common element in the observed lessons, illustrating how such technologies can enhance teaching as well as learning. In several instances teachers projected the iPads onto interactive whiteboards to demonstrate the tasks set for the students. In other examples, it was the students’ work on the iPads that was projected for the purpose of class discussions and constructive feedback.

The variety of ways in which the technologies were used demonstrated their flexibility when compared to traditional laptop or desktop computers. All of the teachers involved in both projects found it challenging to integrate the technologies into mathematics in contrast with other subject areas such as literacy.

This challenge led to the teachers expressing a need for professional development in relation to integrating the iPads into existing pedagogical practices and a desire to have a platform from which ideas can be shared amongst peers. The incorporation of the iPads led to the teachers becoming more creative in their lesson planning and as a result, tasks became more student-centred and allowed time for students to investigate and explore mathematics promoting mathematical thinking and problem solving.

Overall, the use of iPads appeared to have a positive impact on the practices of the teachers and the engagement of the students participating in the projects. Benefits of the iPads included the flexibility in how and where they could be used, the instant feedback for students and the ability for students to make mistakes and correct them, alleviating the fear of failure and promoting student confidence.

The disadvantages of the iPads were mostly management issues relating to the sourcing and uploading of appropriate applications, the difficulties associated with record-keeping and supervision of students while using the iPads and the number of iPads available for use. The interactive nature of the technologies was engaging for the students at an operative level. However, when the tasks in which they were embedded did not include appropriate cognitive challenge, students were less engaged and became distracted by the technologies.

The incorporation of iPads in the two projects emphasised their potential to increase student engagement and the importance of providing professional learning experiences for teachers that go beyond learning how to operate the technologies. Rather, continued and sustained development of teachers’ technological pedagogical content knowledge (TPACK) (Mishra & Koehler, 2006) that builds on their understanding of mathematics content, ways in which students learn, the misconceptions that occur, and ways in which technology can enhance teaching and learning is required.

 References:     Banister, S. (2010). Integrating the iPod Touch in K-12 education: Visions and vices. Computers in Schools, 27(2), 121-131.    Ireland, G. V., & Woollerton, M. (2010). The impact of the iPad and iPhone on education. Journal of Bunkyo Gakuin University Department of Foreign Languages and Bunkyo Gakuin College(10), 31-48.     Kukulska-Hulme, A. (2009). Will mobile learning change language learning? ReCALL, 21(2), 157-165.     Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017-1054.

Technology and Mathematics: Have you fallen into the App Trap?

Over the course of the last few weeks I have presented several keynote presentations and workshops on the topic of technology and mathematics, and addressing the needs of contemporary learners in the mathematics classroom. When talking about meaningful ways of incorporating digital devices into teaching and learning, I always caution teachers of the danger of allowing the devices to become the focus of the learning, as opposed to the mathematics being the focus.

The increasing popularity of mobile devices has meant that teachers now have literally thousands of applications (apps) to choose from when considering the use of technology for their mathematics lessons. Unfortunately though, the quality of the majority of mathematics-specific apps is questionable. The reason for this is that many of the apps available promote a traditional, drill and practice approach to learning. In fact, many do not promote learning at all and require the student to have prior understanding of the topic or concept covered. However, the news isn’t all bad. If we consider that in Australia our curriculum incorporates the ‘proficiencies’ of problem solving, reasoning, understanding and fluency (in New South Wales we have the added component of communicating), then many of the apps available do promote the building of fluency, but little else.

Unfortunately, the temptation of having so many apps to choose from means that there are some ‘app traps’ that teachers can fall into. Firstly, if you use an app that is presented in a game format, it is easy to create a ‘set and forget’ task. Imagine the scenario where a teacher sets five different tasks, all based on the same mathematical concept. Students are grouped and each group participates in a different task each day. One of the tasks is based upon an app. The students are directed to engage with the app for the duration of the group activity time. They are left alone or with minimal supervision. No evidence of learning is gathered, in fact, there is no evidence that the students were able to interact with the mathematics embedded with the app successfully.

On the other hand, picture the same scenario where one of the students is asked to act as a ‘supervisor’ and record any errors made by the other students. The students are given a short burst of time to engage with the task and the teacher then calls the group together to address any errors identified by the ‘supervisor’. The group then returns to the task and a different child gets to play the role of ‘supervisor’. At the end of the lesson the students are given tailored, task specific reflection prompts that allow them the opportunity to think about the mathematics involved in the game and reflect on challenges and successes. They may even be asked to provide advice to the next group of students to use the app.

Another ‘app trap’ for teachers is the temptation to rely on mathematics specific apps rather than generic apps that provide the students to become authors or producers rather than simply consumers. Consider the following task from my most recent book, Engaging Maths: iPad Activities for Teaching and Learning:

Task_Page34 

The task takes advantage of a number of generic apps and the focus remains firmly fixed on the mathematics task and the mathematical thinking of the students.

One final app trap (for the moment) is that often we download apps that look as though they are going to satisfy our students’ learning needs, however, we don’t have enough time to thoroughly engage with the app to ensure there are no nasty surprises or disappointments. Once the students are using the app in a mathematics lesson, things start to go wrong and the learning time is lost. Technology once again becomes the focus of the lesson. The message here is to try and test each new app before letting students use it. Make sure it has appropriate challenge, aligns with the learning intentions and the curriculum, and is engaging.

The way to avoid the app trap is to keep your use of digital devices simple. Focus on task creativity and apps that promote the role of students as producers and authors, rather than consumers. Seek advice from others who have used the apps that you are considering – they may have insights they could share. Above all, use your apps in ways that will enhance how you teach and how your students learn – if they don’t, then why use them at all?

 

Mathematics, technology, and 21st Century learners: How much technology is too much?

On a recent visit to a shopping centre in Sydney, I noticed a new children’s playground had been installed. On closer inspection I was amazed to find a cubby house structure that had a number of iPads built into it. There was also a phone charging station built less than a metre off the ground, for users of the playground to access. The playground had obviously been designed for very young children. So what’s the problem? Shouldn’t playgrounds be meant to promote physical activity? What messages are the designers of this playground sending to children and their parents? Does technology have to pervade every aspect of our lives? What damage is this doing to children’s social and physical skills?

While considering the implications of this technology-enhanced playground, I began to reflect on the ways we use technology in the classroom. Is there such as thing as having too much technology? I am a strong supporter of using technology to enhance teaching and learning, and I know there are a multitude of benefits for students and teachers, particularly in relation to the use of mobile technologies (Attard 2014, 2013). However, there are issues and tensions. How do we, as educators, balance the use of technology with what we already know works well? For example, in any good mathematics classroom, students would be manipulating concrete materials to assist in building understandings of important mathematical concepts. Children are engaged in hands-on mathematical investigations and problem solving, arguing, reasoning and communicating through the language of mathematics. Can technology replace the kinesthetic and social aspects of good mathematics lessons? How do we find the right balance? Do students actually want more technology in the classroom, or do they prefer a more hands-on and social approach?

Often we use technology in the classroom to bridge the ‘digital divide’ between students’ home lives and school. We know this generation have access to technology outside the school, and we often assume that students are more engaged when we incorporate digital technologies into teaching and learning. In the The App Generation, Gardner and Davis (2013) discuss how our current generation relies on technology in almost every aspect of their lives. They make some important points that can translate to how we view the use of the technology in the classroom, “Apps can make you lazy, discourage the development of new skills, limit you to mimicry or tiny trivial tweaks or tweets – or they can open up whole new worlds for imagining, creating, producing, remixing, even forging new identities and enabling rich forms of intimacy” (p. 33).

Gardner and Davis argue that young people are so immersed in apps, they often view their world as a string of apps. If the use of apps allows us to pursue new possibilities, we are ‘app-enabled’. Conversely, if the use and reliance on apps restrict and determine procedures, choices and goals, the users become ‘app-dependent’ (2013). If we view this argument through the lens of mathematics classrooms, the use of apps could potentially restrict the learning of mathematics and limit teaching practices, or they could provide opportunities for creative pedagogy and for students to engage in higher order skills and problem solving.

So how do educators strike the right balance when it comes to technology? I often promote the use of the SAMR model (Puentedura, 2006) as a good place to start when planning to use technology. The SAMR model (Puentedura, 2006) represents a series of levels of “incremental technology integration within learning environments” (van Oostveen, Muirhead, & Goodman, 2011, p. 82). However, the model is not without limitations. Although it describes four clear levels of technology integration, I believe there should be another level, ‘distraction’, to describe the use of technology that detracts from learning. I also think the model is limited in that it assumes that integration at the lower levels, substitution and augmentation, cannot enhance students’ engagement. What is important is the way the technology is embedded in teaching and learning. Any tool is only as good as the person using it, and if we use the wrong tool, we minimise learning opportunities.

Is there such a thing as having too much technology? Although our students’ futures will be filled with technologies we haven’t yet imagined, I believe we still need to give careful consideration to how, what, when and why we use technology, particularly in the mathematics classroom. If students develop misconceptions around important mathematical concepts, we risk disengagement, the development of negative attitudes and students turning away from further study of mathematics in the later years of schooling and beyond. As for the technology-enhanced playground, there is a time and a place for learning with technology. I would rather see young children running around, playing and laughing with each other rather than sitting down and interacting with an iPad!

References:

Attard C, 2014, iPads in the primary mathematics classroom: exploring the experiences of four teachers in Empowering the Future Generation Through Mathematics Education, White, Allan L., Tahir, Suhaidah binti, Cheah, Ui Hock, Malaysia, pp 369-384. Penang: SEMEO RECSAM.

Attard, C. (2013). Introducing iPads into Primary Mathematics Pedagogies: An Exploration of Two Teachers’ Experiences. Paper presented at the Mathematics education: Yesterday, today and tomorrow (Proceedings of the 36th Annual conference of the Mathematics Education Research Group of Australasia), Melbourne.

Gardner, H, & Davis, K. (2013). The app generation. New Haven: Yale University Press.

Puentedura, R. (2006). SAMR.   Retrieved July 16, 2013, from www.hippasus.com

van Oostveen, R, Muirhead, William, & Goodman, William M. (2011). Tablet PCs and reconceptualizing learning with technology: a case study in higher education. Interactive Technology and Smart Education, 8(2), 78-93. doi: http://dx.doi.org/10.1108/17415651111141803

New Years Resolutions, primary mathematics, and technology

Welcome to the first blog post on my Engaging Maths site! I thought I’d try setting up a website that will host some of my resources, thoughts, videos, ideas and anything else I think of! I hope you enjoy 🙂

This year, for the first time, I volunteered to teach one of my primary mathematics units during the summer school session. That meant that I had to begin teaching in the first week of January….a shock to the system. As challenging as it was to summon my enthusiasm, the first week has been excellent and working with keen pre-service primary teachers has got me thinking about all the teachers still on holidays. Most of you would have already started thinking about and perhaps planning for your new class in 2015. I wonder if anyone made a new year’s resolution relating to teaching? I always enjoyed that period of planning new things to do with a fresh group of students, in fact, I still do, but it’s at the tertiary level. This year I am committed to integrating even more technology into teaching and learning, and making more use of the mobile technologies that students bring with them. Having said that, I need to make sure my use of technology is going to enhance what I do, and not distract students.

Can I use technology to make mathematics more relevant, and can this be replicated in primary mathematics classrooms? I think the answer is yes! An example of how I have done this occurred two days ago with my university students through the use of a maths trail. If you don’t know what a maths trail is, it’s really like an outdoor adventure/treasure hunt where students are taken out of the school environment and using maps, photographs, and all sorts of equipment, get to follow a trail and do some really engaging, relevant and real life mathematics activities. Here is an example from the maths trail I have designed at the UWS Bankstown campus based on the giant rabbit sculpture that sits outside the pre-school on campus (the students are provided with a photograph to help them find the site):

Somewhere on campus is a giant rabbit…..can you locate it?

  1. How many times bigger than a normal rabbit do you think it is? Explain the mathematics you used to work this out?
  2. If the university wanted to build a sculpture of a human adult to stand beside the rabbit, how tall would the sculpture have to be? Use your iPad to record the group’s working out and your findings.

Once the students have finished the maths trail and are back in the classroom, a follow-up activity based on the giant rabbit tasks is provided along with a QR Code:

If two newborn rabbits (one male and one female) are put in a pen, how many rabbits would be in the pen after one year? How many would be in the pen after 18 months?

Use the QR Code for extra help: Rabbit problem

That is just one example of a number of different maths trail ‘stations’. The task above could be replicated in any number of ways, with many benefits for students and teachers. First, the original maths trail tasks require students to apply their knowledge, understanding, and higher order thinking skills rather than complete a simple computation or regurgitate a set of rules or facts. Secondly, the tasks are open-ended, allowing for creativity. The use of the iPad on site to record students’ responses promotes discussion and the use of mathematical language, and takes away the burden of having to use pen and paper to record absolutely everything – it can all be done on one device. Extending the task through the use of an interesting problem and some help (you need to access the QR code), allows you to promote sustained engagement.

So that’s one way I have kept my new year’s resolution to incorporate more technology into the teaching and learning of mathematics….more ideas coming soon!